翻訳と辞書
Words near each other
・ Schwarzwald-Baar-Center
・ Schwarzwald-Baar-Kreis
・ Schwarzwald-Querweg Freiburg-Bodensee
・ Schwarzwald-Stadion
・ Schwarzwalder Hochwald
・ Schwarzwaldfahrt aus Liebeskummer
・ Schwarzwaldhochstraße
・ Schwarzwaldmelodie
・ Schwarzwaldmädel
・ Schwarzwaldverein
・ Schwarzwasser
・ Schwarzwasser (Mulde)
・ Schwarzwasser (Preßnitz)
・ Schwarzwasserbach (Ems)
・ Schwarzwassertal
Schwarz–Ahlfors–Pick theorem
・ Schwarz–Christoffel mapping
・ Schwasdorf
・ Schwassmann–Wachmann
・ Schwatka Lake
・ Schwaub, California
・ Schwaz
・ Schwaz District
・ Schwaz Heliport
・ Schwebebahn
・ Schwebel
・ Schwebel's Bakery
・ Schwebelbach
・ Schwebheim
・ Schwebsange


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Schwarz–Ahlfors–Pick theorem : ウィキペディア英語版
Schwarz–Ahlfors–Pick theorem
In mathematics, the Schwarz–Ahlfors–Pick theorem is an extension of the Schwarz lemma for hyperbolic geometry, such as the Poincaré half-plane model.
The Schwarz–Pick lemma states that every holomorphic function from the unit disk ''U'' to itself, or from the upper half-plane ''H'' to itself, will not increase the Poincaré distance between points. The unit disk ''U'' with the Poincaré metric has negative Gaussian curvature −1. In 1938, Lars Ahlfors generalised the lemma to maps from the unit disk to other negatively curved surfaces:
Theorem (SchwarzAhlforsPick). Let ''U'' be the unit disk with Poincaré metric \rho; let ''S'' be a Riemann surface endowed with a Hermitian metric \sigma whose Gaussian curvature is ≤ −1; let f:U\rightarrow S be a holomorphic function. Then
:\sigma(f(z_1),f(z_2)) \leq \rho(z_1,z_2)
for all z_1,z_2 \in U.
A generalization of this theorem was proved by Shing-Tung Yau in 1973.
==References==



抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Schwarz–Ahlfors–Pick theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.