翻訳と辞書 |
Schwarz–Ahlfors–Pick theorem : ウィキペディア英語版 | Schwarz–Ahlfors–Pick theorem In mathematics, the Schwarz–Ahlfors–Pick theorem is an extension of the Schwarz lemma for hyperbolic geometry, such as the Poincaré half-plane model. The Schwarz–Pick lemma states that every holomorphic function from the unit disk ''U'' to itself, or from the upper half-plane ''H'' to itself, will not increase the Poincaré distance between points. The unit disk ''U'' with the Poincaré metric has negative Gaussian curvature −1. In 1938, Lars Ahlfors generalised the lemma to maps from the unit disk to other negatively curved surfaces: Theorem (Schwarz–Ahlfors–Pick). Let ''U'' be the unit disk with Poincaré metric ; let ''S'' be a Riemann surface endowed with a Hermitian metric whose Gaussian curvature is ≤ −1; let be a holomorphic function. Then : for all A generalization of this theorem was proved by Shing-Tung Yau in 1973. ==References==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Schwarz–Ahlfors–Pick theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|